Singular Value Decomposition for Multidimensional Matrices

ثبت نشده
چکیده

Singular Value Decomposition (SVD) is of great significance in theory development of mathematics and statistics. In this paper we propose the SVD for 3-dimensional (3-D) matrices and extend it to the general Multidimensional Matrices (MM). We use the basic operations associated with MM introduced by Solo to define some additional aspects of MM. We achieve SVD for 3-D matrix through these MM operations. The proposed SVD has similar characterizations as for 2-D matrices. Further we summarize various characterizations of singular values obtained through the SVD of MM. We demonstrate our results with an example and compare them with the existing method. We also develop Matlab functions to perform SVD of MM and some related MM operations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD)

The singular value decomposition (SVD) is a generalization of the eigen-decomposition which can be used to analyze rectangular matrices (the eigen-decomposition is definedonly for squaredmatrices). By analogy with the eigen-decomposition, which decomposes a matrix into two simple matrices, the main idea of the SVD is to decompose a rectangular matrix into three simple matrices: Two orthogonal m...

متن کامل

Symbolic computation of the Duggal transform

Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

More Accurate Bidiagonal Reduction for Computing the Singular Value Decomposition

Bidiagonal reduction is the preliminary stage for the fastest stable algorithms for computing the singular value decomposition. However, the best error bounds on bidiagonal reduction methods are of the form A + A = UBV T ; kAk 2 " M f(n)kAk 2 where B is bidiagonal, U and V are orthogonal, " M is machine precision, and f(n) is a modestly growing function of the dimensions of A. A Givens-based bi...

متن کامل

Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations

  In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems    

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013